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Abstract--In this paper, we will describe the methodology used to conceive and size a flowmeter for 
two-phase dispersed flows. The Venturi having been chosen as the velocity measurement device, we focus 
on its measurement sensitivity to the velocity slip between the phases at the throat. Among the different 
two-phase flow models reviewed, an original one has been selected and adapted to predict; velocity and 
pressure distributions along a Venturi tube with air/water and oil/water flows. Bubble and liquid velocity 
calculations performed by this model are compared with experimental data to show a good agreement 
between predicted and measured velocities at the throat. The superiority of this model is shown by 
comparing its pressure drop predictions with those obtained with more classical two fluid models and 
available experimental data. Finally the influence of the bubble diameter on the pressure drop calculations 
and flow rate evaluations has been studied to determine the maximum admissible bubble diameter and 
then to size the mixer set upstream of the Venturi. Copyright © 1996 Elsevier Science Ltd. 

Key Words: two-phase dispersed flows, multiphase flow metering, Venturi meter 

1. I N T R O D U C T I O N  

The accurate measurement  o f  mult iphase flows composed  o f  oil, water, and gas phases is o f  great 
practical significance in many  industries, such as chemical and process industries, power plants, oil 
refineries, and in particular, the explorat ion and product ion  o f  crude oil and natural  gas. The flow 
o f  crude oil, natural  gas and water in a three-phase mixture flowing in an oil well constitutes a 
s tandard condi t ion in oil product ion.  

As reported by Delhaye (1989) and Hewitt  et  al. (1988), the main requirements for measuring 
flow rates are focused on four  areas: 

(1) Reservoir  management ,  
(2) Cus tody  transfer metering: here product ion  f rom one field may  be mixed with product ion 

f rom another  with ownership o f  the two being different, 
(3) Process control:  when gas lift pumping  or  vapour  injection is used, it is necessary to know 

the efficiency o f  the process, and 
(4) Fiscal metering. 

The accuracy expected for  each flow rate measurement  in the first three areas is about  five percent 
o f  the measured value, whereas fiscal metering requires measurement  with errors less than one 
percent. This last level o f  accuracy is obviously much more  difficult to obtain. A m o n g  the available 
alternatives, there are three main possibilities o f  operation: 

(1) To make  all measurements  when the flow is in its natural  state (no perturbation),  
(2) To  homogenise  the mixture to make all phase velocities equal, and 
(3) To separate the phases and measure each individual phase using single phase techniques. 

The second alternative, simpler than the first one (only one velocity to measure) and less intrusive 
than the last, appears  to be a good  compromise  between complexity and accuracy as explained by 
Hewitt  et  al. (1988). It  also opens the way to the application o f  a large variety o f  currently used 
well known techniques in single-phase flow, to two-phase gas-l iquid flows in nuclear and chemical 
engineering. Choos ing  this method o f  operation,  our  multiphase flow meter will be naturally 
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composed of a mixer (upstream of the measurement section), a device to measure velocity and one 
or two devices to measure phase fractions. 

Among the large variety of techniques to measure velocity which have been presented by Hewitt 
(1988), many neutron-based techniques, although very promising, seem to be unrealistic for 
submerged, ocean applications. Therefore, a simpler device, the Venturi meter has been chosen. 

The main available techniques to determine phase fraction are: attenuation of X-rays or gamma 
rays (Delhaye et al. 1980), measurement of impedance (good results under laboratory conditions, 
but much more difficult to use in field situations), measurement of celerity or attenuation of 
ultrasonic waves. This last technique is very useful to measure void fraction and interfacial area 
in bubbly air-water flows (Bensler 1990). However, its extension to production, though promising, 
still needs much work. 

To homogenise the flow upstream of the measurements, it is intended to utilise the static mixer 
OPTIMIX (Lecoffre et al. 1993). The fluids to be mixed cross two successive walls through holes 
with different diameters. In the first stage, the mixture is representative of the mean concentrations 
of the different species, and in the second, a finer mixing is obtained by creating a strong turbulent 
dissipation of energy. Using the model of Hinze and Kolmogorov (Hinze 1955; Sevik & Park 1973; 
Berne 1983), it is possible to predict the maximum droplet diameter from the dissipation rate. 
According to Lecoffre (1993), it is thus possible to size the mixer by an inverse calculation such 
that it generates a dispersion with a given maximum droplet diameter. This feature makes 
OPTIMIX quite attractive for our purpose. 

Since we have been first interested in the choice of a device for determining the mean velocity, 
this paper emphasises the mean velocity measurement. 

Widely used in single-phase and some two-phase measurements, the Venturi tube has the 
advantage of being easily designed and is not expensive. One of the most difficult problems that 
appears when used in two-phase flows is the velocity slip that occurs at the throat, making the 
interpretation of pressure drops ambiguous. It is therefore important to determine the maximum 
bubble diameter for which the velocity slip no longer influences the classical (homogeneous) flow 
rate evaluation. 

In this paper we have first presented a review of the available two-phase dispersed flow models 
to predict pressure drops. Among them the model described by Kowe et al. (1988), based on the 
interstitial velocity approach, appears to be the most promising. This model is then adapted to 
predict air/water and oil/water flows. The superiority of this model is shown by comparing its 
predictions with those obtained with more classical two-fluid models and available data. Lastly, 
with this model it has been possible to predict the pressure drop for a range of bubble diameters, 
and thus to determine the optimal bubble or drop size required for a satisfactory operation of the 
meter. 

2. STATE OF ART OF TWO-PHASE DISPERSED FLOW MODELS 

The simplest model is the homogeneous flow model that can be derived from common 
international standards (BS 1042, ISO 1932). In this model, the flow rate is calculated using 
single-phase formulas and by replacing the density with the density of the two-phase mixture 
defined by: 

p = (1 - -  E)p L -~ £PG [1] 

where PL and PG are the liquid and the gas densities, respectively, and E is the void fraction. With 
this model (referred to as the HM hereafter), a single equation relates the pressure drop to the flow 
velocity and the void fraction. 

Several authors have proposed correlations for predicting two-phase pressure drop in pipes, 
when the pressure drop of a single phase flow (in the same geometry), the quality, and the void 
fraction are known (Fairhust 1983; Chisholm 1983). These correlations provide a good estimate 
only when used within the range of parameters recommended by the authors, but, they rarely 
provide a satisfactory prediction when a change in operating variables occurs--a typical problem 
with empirical correlations. 
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Thang & Davis (1979) have determined the pressure distribution for a two-phase flow along 
Venturis by writing and solving mass balance equations for each phase and a momentum balance 
for the two-phase mixture. To close the model, these authors assumed that the relative velocity ratio 
U~/UL (Uc and UL are the mean gas and liquid velocities, respectively) remains constant along the 
Venturi. 

Several authors have proposed four-equation two-phase flow models to evaluate void fraction, 
phase velocity and pressure distributions (Winjgaarden & Biesheuvel 1984; Lewis & Davidson 1985; 
Kuo & Wallis 1988; Vromman 1988). The model presented by Lewis & Davidson (1985), referred to 
as the LDM hereafter, has been used as a reference two-fluid model for further comparison in this 
paper. It will be shortly described now. These authors considered a two-phase, one-dimensional, 
gas-liquid flow at steady state and used mass and momentum balances for each phase. The 
independent variables are UL, Uc, C and P, the area-averaged pressure common to both phases. 

The mass balances have the classical form: 

d 
d--x [A (1 - QUL] = 0 [2] 

d 
d--x [AEuc] = 0 [3] 

where A is the varying cross-sectional area of the Venturi and x is the abscissa along the Venturi 
axis. Owing to the large velocity range which is expected in our flow metering problem, the LDM 
has been simplified by assuming that both phases are incompressible. 

The third LDM equation is the momentum balance for the gas phase. Its derivation is based 
on a force balance for a single bubble (inertial terms being negligible). This balance accounts for 
the added mass force, the pressure gradient force and a drag force, and results in: 

/ duc dUL'~ 
Vb CmPL ~ uG ~X -~X - dP - UL ) + Vb dxx + ~d = 0 [4] 

where V b is the bubble volume, Cm is the added mass coefficient, Zd is the drag force on the bubble, 
and P is the pressure. It is clear from [4] that bubble size must be given to close the problem. 

The fourth and last equation of the LDM is a momentum balance for the mixture when the gas 
inertia is neglected: 

dP 
(1 - E)pLUL ~ = dx pLg(1 -- E). [5] 

As we will see further in this paper, the derivation of these two equations is not totally 
satisfactory and uncertainties may arise from the expression for the added mass force. By solving 
these equations one can predict the evolution of void fractions, velocities and pressures along the 
x-axis, provided that their upstream values are known. 

Although he was primarily interested in critical flow rate modelling, Vromman (1988) uses the 
same basic equations but he expresses the force exerted by the liquid on the bubble with the results 
of Voinov (1973) and keeps a single term that describes the expansion of the bubble. In his model, 
the bubble radius r b is no longer an input, but satisfies the interfacial area model of Hinze and 
Kolmogorov. 

More recently Kowe et al. (1988) have proposed an original approach. Following the theoretical 
work of Cook & Harlow (1984), and the experiments reported by Bataille et al. (1990) to measure 
the volume of liquid driven by a bubble, they have regarded the two-phase media as consisting of 
three interacting fields (figure 1): 

(1) The bubbles. 
(2) The liquid displaced by the bubbles. 
(3) The so-called 'interstitial liquid' that flows far away from bubbles. 

As a result, Kowe et al. (1988) introduced a velocity field u0 for the interstitial liquid that differs 
from the mean liquid velocity field. According to these authors this velocity u0 is the velocity which 
should be used instead of the averaged liquid velocity in the closure laws when a reference velocity 
is required. This allows in particular the added mass force to be expressed in a more satisfactory 
manner. 
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As far as we have correctly understood their ideas, the volume of the fluid is partitioned in three 
domains each having its own velocity field. Letting V be the total volume occupied by the mixture: 

(1) The bubbles occupy the volume EV and their velocity is v. 
(2) The liquid displaced by bubbles occupies the volume Cm E V and flows with the same velocity 

as the bubbles v. 
(3) The interstitial liquid occupies the remaining volume V - E V - Cm E V and flows with the 

velocity uo. 

One of  the reasons for sizing the displaced liquid volume with the added mass coefficient C m 

originates from Darwin (1953) and is fully supported by the experiments of Bataille et al. (1990). 
These authors found that for bubble diameters between 2 and 4 mm the volume of liquid displaced 
by the motion of an isolated bubble in quiescent liquid, is exactly half the bubble volume. 

In this three-field model approach the steady state mass balances become: 

d d 
[A(I ~ CmE)Uo]-+'~- [ACmEV ] 0 

dx (1x 
[6] 

for the liquid, and 

d 
d~ [Aev] = 0 [7] 

for the dispersed phase. 
Consistent to the three-field approach, it is necessary to introduce an interstitial pressure P0 

which is different from the mean pressure ( P )  obtained for the entire liquid. The difference between 
the two pressures is proportional to (uc - UL) 2 as already found by Prosperetti & Jones (1984) when 
they directly calculated the pressure force on the liquid containing bubbles. 

In the three-field approach we have six unknowns: u0, (u) ,  v, ~, P0 and ( P ) .  In addition to 
the mass balances, the Kowe et al. (1988) model consists of two momentum balances and two 
equations derived from the added mass effects calculated by Voinov (1973). These two equations 
are independent from the already mentioned balance equations. These equations will be presented 
in the next section of this paper, as well as a discussion of the derivation of some terms. 

3. E Q U A T I O N S  OF MO TIO N  

3.1. Momentum balance for bubbles in liquid flow 

To close the momentum balance we must provide the interracial force exerted by the continuous 
phase on a bubble or a droplet (assumed to be spherical), in an unsteady flow. Voinov (1973) 

L _ j ,  
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' \ \  J / '  
\ / 

Flow 
I 

Figure 1. Schematic representation of the fields in the flow. 
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calculated the potential flow around a sphere of  radius a. By integrating the pressure forces around 
the surface of  the sphere, the interfacial force FI was found to be: 

F 4/1:a3 [-Duo 1/'Duo 
PLL-D-7 [8] 

where 

D a 
= + u o ' V  Dt at [9] 

+g ~(uo-v)-g I 

u0 -- V~0'  [ 10] 

*0 being the potential for flow without bubbles. The velocity uo corresponds to the interstitial 
velocity. Lhuillier (1982) also used potential theory and found the same expression for this force. 

Thomas et al. (1983) assumed that we can simply add a lift force F L when the sphere is in a 
rotational straining flow, and a drag force Fa to take into account liquid viscosity, or: 

4rca 3 
FL = -- PL ~ CL(V -- uo) X W [1 1] 

where C L is a lift coefficient, 

and 

w = V x uo [12] 

4ha3 IPp - P~[ (v-- uo ) f ( lv  -- uoI" / 
FD = - -  PL ~ -  PL g Vt ~ /  [13] 

w h e r e f  ~ 1 when the liquid is pure a n d f  = Iv - uol/1/, when the bubble is in a contaminated liquid; 
pp is the inclusion density and V, the rise velocity. 

The momentum balance then becomes: 

4xa 3 /d, 
- g ) .  [14] F = rl + FL + FD = p p - T -  ~,~ 

A numerical simulation conducted by Rivero (1991) on the separation of  the different forces 
appearing in the total force on a spherical inclusion, showed that in a steady and spatially 
accelerated flow, the inertial term is DUO/Dt + C m ( D u o / D t -  dv/dt), where Cm = 1/2 even for 
viscous fluid (Re < 300). This result justifies the fact that we can, therefore, directly add a viscous 
drag term to the inertial term without changing it. However, the expression of  this inertial term 
deserves some clarification. 

In [8] the sum p D u o / D t  - p g  is often identified with the action of  the pressure force on the 
dispersed phase and the remaining terms in right side of  [8] are then associated with an interfacial 
force. This decomposition is often the origin of the following modelling error. 

If  we first consider the case where u o is taken as the reference liquid velocity, Couet et al. (1991), 
for instance, write: 

Duo 
PL--D--]- -- PL'g = -- VP0 [15] 

and include the pressure gradient VPo in the total force exerted on an inclusion. The problem comes 
from [15] which can be read as a liquid momentum balance. This equation is still correct when there 
is only a single bubble in the flow, but is not rigorously verified when the void fraction increases. 
As it will be shown in section 3.2, the momentum balance for the continuous liquid is different 
from [15]. It is so proper to keep [8] in its original form, since uo varies with the void fraction, as 
expressed by the liquid momentum balance. 

Secondly, if we consider the case where the mean velocity u is taken as the reference liquid 
velocity, it is often written that: 

Du 
PL ~-~ -- PL'g = -- VP  [16] 
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Figure 2. Boundary surfaces used to express the liquid momentum balance (a) when only one bubble is 
considered; (b) when several bubbles are considered. 

and the pressure gradient is incorporated in the force exerted on the inclusion. The left side of [16] 
is only due to liquid acceleration and is included in the interfacial force between the liquid and 
the bubble, therefore, it must not interfere in the mixture momentum balance. By splitting the total 
force exerted on the inclusion into a pressure gradient force and an interfacial force (an added mass 
force and a viscous drag force), this pressure gradient is typically included in the mixture 
momentum, thus being considered twice. 

Following this line of reasoning for the interfacial force, the liquid momentum balance should 
be written as: 

E / D u  dv'~ E ( v -  u ) . . / l v -  ul'~ 
Du __Vp+pLg____i~__pLCmt_~ ~ )  +-[~__elpL--ppg--~t J ~ - t  ). [17] PL D--~ = 

Equation [17] is clearly in contradiction with [16] when the void fraction has a finite value: here 
also it is better to keep the inertial terms in their original form. 

3.2. Momentum equation for the continuous phase 
By writing a momentum balance for the continuous liquid phase occupying the volume V L, 

included between the surface fl delimiting the bubble and a bounding surface ¢ (figure 2(a)), we 
obtain, after projection on the /-axis, an equation similar to [13] of Kowe et al. (1988): 

- - |  PLl-~---g  i d V +  -pni+rl-~xjnj)dS+ pLu, u, njdS [18] 
dVl. \ VL 

where ui is the liquid velocity irrespective of whether we are, near or far from the bubble 
(VL > CmVb). 

Kowe et al. (1988) have proposed several transformations of the right side of [18]. Here we 
propose a slightly different derivation of the last term. 

Assuming that there is no mass transfer between the phases we can write: 

f u, ujnAS=vjfu,nAS [19] 

since 
ujnj = vjnj [20] 

and assuming that the inclusions are small symmetrical particles in an inviscid straining flow, 
Kowe et al. (1988) write that: 

f ~ OUo~ [21] vj uinjdS = VbV i ~Xj" 
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No more details are provided by these authors. This equation can, however, be derived 
from Voinov's potential ~ by expressing it in terms of spherical harmonics and taking into 
account the orthogonal properties of these harmonics over a sphere. Kowe et al. (1988) mention 
a problem with this term when they compared their computational results with the experimental 
data of Lewis & Davidson (1985), and proposed to suppress it, as it should be the case with solid 
particles. 

In a first step, we have determined the weight of this term by analysing the Kowe et al. (1988) 
predictions with experimental data not used by these authors. 

In determining discharge coefficients of standard nozzles for single and two-phase flows, 
Doroshenko (1974) measured the pressure drop through nozzles with void fractions of 10, 20, 30 
and 40%. The two phase flows are homogenized by the diverting part of a mixing device situated 
upstream of the tested nozzle. Standard nozzles (figure 3(a)) with different area ratios were used 
and inserted in a horizontal pipe with an internal diameter of 98 mm. 

We have computed the pressure drop for the nozzle of figure 4 with an area ratio of 0.21 and 
a void fraction of 30%, using [20b] presented by Kowe et al. (1988) and the same equation without 
-VdUo/~X (a full discussion of these data will provided in section 5), We can clearly see on figure 
4 a large discrepancy between the numerical results when the term -V~Uo/dX is used, and the 
experimental data for a wide range of liquid velocities. This effect has been mentioned by Kowe 
et al. (1988) for liquid velocities less than 0.1 m/s in vertical flows. Figure 4 shows that this trend 
is still present with higher values of the liquid velocity (up to 3 m/s) in horizontal flows. The Kowe 
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Figure 3. (a) Nozzle used by Dorshenko (1974); (b) Nozzle used for numerical resolution; (c) Nozzle used 

by Lewis & Davidson (1985). 
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e t  al.  (1988) mode l  underpred ic t s  the pressure  d rop  with an e r ror  o f  abou t  35%. These results show 
tha t  there  are reasons  to suspect the der iva t ion  o f  [21]. 

The  p rob l em arises, accord ing  to us, f rom the poten t ia l  flow theory  assumpt ion .  This  expression 
would  be valid if  the entire external  flow was fully potent ia l .  However ,  the velocity derivat ives in 
tha t  case would  not  satisfy the tangent ia l  stress b o u n d a r y  condi t ion .  Thus,  a b o u n d a r y  layer still 
exists on the bubble  surface. The  b o u n d a r y  layer  is much  th inner  and  remains  a t tached  to the 
surface longer  than  on a c o m p a r a b l e  rigid body ,  but  it implies a velocity var ia t ion  across  itself and  
a con t inu i ty  o f  the tangent ia l  velocities,  so we should  have writ ten: 

u~nj = vinj .  [22] 
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11.61 cm 1.35 cm 9.9 cm 

Figure 6. Venturi used by Kuo & Wallis (1988). Inlet cross section area = 59.47 cm 2, throat to inlet cross 
section area ratio = 0.36, outlet to inlet cross section area ratio = 0.452. 

I f  the particles are small enough so that the flow around  them is axisymmetrical, say in relation 
to the/-axis ,  the internal flow in the particle will also become symmetrical  with regard to this axis, 
and so we can write: 

fvb covi dS Oxj = 0 for j ~ i [23] 

since 
0 

- - = 0  for j :~ i. [24] 
axj 

To  express the last integral we have written a mass balance for the particle: 

dv~ dV Ov~ dV 

and finally obtained that: 

vj vinjdS = vj COxj = 0. [261 
J Vb 

This result is quite consistent with the three-field flow assumption that  defines a volume o f  liquid 
at tached to the bubble flowing with the same velocity. 

The m o m e n t u m  balance when there is only one bubble is written as: 

f¢(pni+pLU,.jnj--n~nj)dS=-- ({OUo, . PLJv \c3t --gi) dV 

z, f c  Ouo,  -- F~-- PL b L m~-dtt cOt / + g']" [27] 

N o w  considering that  the control  surface ~ contains N inclusions o f  arbitrary size, we obtain 
a m o m e n t u m  balance quite similar to [21] o f  Kowe et al. (1988): 

- f ( du° i -g i )dV  f¢(P°n'+pLu°'u°~n')dS+i¢6M'= PLJvkd t 

dUoi nj ] d S. 6 M, = f ¢ [ ( ( P ) - Po )ni + PL ( ( UiUj ) - uoiUoj )nj - q -~x j 

where 

[28] 

[29] 

( )  represents a volume average within the liquid alone and q is the liquid dynamic  viscosity. We 
need to evaluate the differences between ( P )  and Po and between (uiuj) and Uoi% which are caused 



by additional kinetic energy and momentum flux in the liquid near the bubbles. Using, as 
Kowe et al., potential theory but remaining consistent with Voinov's calculations we find slightly 
different results: 

~ [~ aZc3u°ic~u°il 
<P> - P o  = --pLT~_E Cm(vi-uoi)(vi-uoi)+ 15 axj axjj [3o] 
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Figure 7. Comparison between calculated velocities with the three-field model and measured ones obtained 
by Kuo & Wallis (1988) when the upstream liquid velocity is (a) 50cm/s; (b) 70cm/s; (c) 89cm/s. 

T o  express  ( u i u j )  - UoiUoj we do not use only diagonal terms (as did Kowe et al.) but also include 
the i , j  terms: 

(u~uj)  - Uo~Uoj = PL ~ (V~- Uo~)(vj -- Uoj) 

3 4 2 ~Uoi dUoj 2 2- 02Uoi 7 
+-~6ij(vi--Uoi)(vi--Uoi)+~6-~a cTxt ~ CTXk -F~-~a 6 / j d x - ~ k J .  [31] 

Equat ions  [30] and [31] show extra  terms when compared  to the Kowe  et al. (1988) expressions. 
These terms take into account  the unsymmetr ic  distr ibution o f  kinetic energy and m o m e n t u m  flux 
a round  the particle. These new terms are scaled by the rat io o f  the bubble  d iameter  to the flow 
length scale (a/L) 2. These m a y  be small, however  in the case o f  rapid contract ion and very low 
velocity slip, they m a y  remain  o f  the same order  of  magni tude  as the main  terms ( v i -  uoi)(vj- Uoj) 
and must  not  be neglected. 

4 2 cm _ c m  

exit throat inlet 

< >~ > 

15.7 cm 7.30 cm 

Figure 8. Two dimensional nozzle used by Ishii et al. (1992). Inlet cross section area = 6 cm 2, throat to 
inlet cross section area ratio = 0.5, outlet to inlet cross section area = 0.375. 
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Figure 9. Comparison between calculated velocities with the three-field model and measured ones obtained 
by lshii et al. (1992) when the upstream liquid velocity is 390 cm/s and the void fraction is 5%. 

4. N U M E R I C A L  S O L U T I O N  F O R  B U B B L E  O R  D R O P L E T  F L O W S  T H R O U G H  A 
C O N T R A C T I O N  

In the remaining sections we assume steady state, one dimensional  flow through a contract ion 
and that  all inclusions have the same diameter .  With  these assumpt ions  our  model  can be described 
by a system o f  six equat ions  projected on the x-axis  o f  the pipe: 

I dv 
pp V ~ -a t- g cos c¢ 

where 

d 
d~ {[u0(1 - c) + CmE(V -- u0)]A } = 0 

d 
d x  [EvA ] = 0 

1 [ duo d v  = P L  (l + C m ) u 0 ~  x --  C m V ~ x  + g  COSa - - g - -  

d [A (Po + pLUg + 6M)] = Pw dA d-x dxx rw 27~R - A [EF + (1 -- e)pLg COS C¢] 

6 M  = - PL ~ (v - -  bl 0 ) 2  

1 
- (v - u0)2 P w = P 0  ~ C ~  I - E  

[32] 

[33] 

(v - U o ) f ( I v  - u0l~ ~ = F [341 
v, \ v, ]_1 

[351 

[363 

[37] 

1 2 
rw = ~ ptfwUo [381 

t 

f~ = 0.079 ( ~ )  -~ . [39] 

pp is the dispersed phase  density, R the pipe radius, and • the inclination angle of  the pipe. 
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Knowing the upstream values of  the independent variables, we can calculate the velocities uo and 
v, the void fraction and the pressure P0 by solving numerically the set [32]-[39]. Then the last 
variables Pw and (u}  can be deduced. 

To solve an equivalent system when the particles are assumed to be bubbles, Kowe et al. (1988) 
used a first-order perturbation method for the velocities u0 and v. Using this method, they directly 
obtained the velocities u~0 °) and v <°) when there is a single bubble in the flow. However, large errors 
occur in the results when the upstream void fraction is greater than 10%, as shown in figure 5. 
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Figure 10 (a and b) See caption overleaf 
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Figure 10. Comparison between theoretical models and experimental data of Lewis & Davidson (1985) 
when (a) the liquid superficial velocity is 52 cm/s and the throat diameter is 3 cm; (b) the liquid superficial 
velocity is 54 cm/s and the throat diameter is 4 cm; (c) the liquid superficial velocity is 65 cm/s and the 

throat diameter is 4 cm. 

5. R E S U L T S  

5.1. Velocity profiles 

The three-field model (TFM) estimates the influence of phase slip inside the liquid phase, 
therefore, it was natural to assess the prediction of the difference between particle and liquid 
velocities. 

Among the few experiments available, Kuo & Wallis (1988) measured the bubble and the liquid 
velocities in an upward flow through a Venturi (figure 6). Eighteen rows of phototransistors were 
placed along the Venturi, spaced on 1 cm intervals, to track the bubble trajectory and determine 
its velocity. The liquid velocity was measured using a Pitot tube. 

Figure 7(a)-(c) shows a comparison between numerical results obtained from the three-field 
model and the experimental data of  Kuo & Wallis (1988). The bubble deviating little from the 
Venturi axis during its motion, the upstream liquid velocity used in the calculations is the velocity 
measured on the Venturi axis upstream of the convergent. The function used for viscous drag was 
f =  Iv - u  I/V, with 1I, = 20cm/s (this value having been measured by Kuo & Wallis 1988). 

For  upstream liquid velocities of  50 and 70 cm/s (figure 7(a) and (b)) the model predicts the 
velocity slip along the convergent section and the throat  entrance quite well. In the divergent 
portion, the bubble velocity values flatten and deviate from the numerical results. After the throat, 
the effect of  turbulence increases significantly and the lift forces drive the bubble out of its 
rectilinear trajectory and create strong velocity fluctuations. 

For  the upstream liquid velocity u0(0)= 89cm/s, the numerical results deviate from the 
experimental data, as the bubble velocity is overestimated by the TFM,  and the viscous drag seems 
to be too weak. Indeed, the bubble diameter is reported to vary in these experiments between 1.5 
and 2 ram, and the greater the liquid flow rate, the smaller the bubble diameter. For  u0(0) = 89 cm/s, 
this diameter is probably closer to 1.5 ram. I f  we use [7.9] found in Clift et al. (1978) to calculate 
the rise velocity, we find V t = 16 cm/s for db= 1.5 mm instead of  20 cm/s for db= 2 mm. This new 
value produces better agreement between numerical results and experimental data. This shows the 
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importance of  correctly modelling the rise velocity as a function of bubble diameter, and the 
necessity of determining the bubble size. 

More recently Ishii et al. (1992) conducted velocity measurements of liquid and bubbles in bubbly 
flows through a Venturi for the case of non vanishing void fraction, and for much greater liquid 
velocities than in the Kuo & Wallis experiments. They utilised a vertical downward flow through 
a two-dimensional nozzle, with dimensions presented in figure 8. The upstream void fraction, liquid 
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Figure 11 (a and b) See caption overleaf 



7 2 8  

(c) 

C. BOYER and H. LEMONNIER 

70000 

60000 

50000 

40000 

30000 

20000 

10000 

0 

0 50 

Lewis & Davidson Model 
. . . . . .  Homogeneous Model 

e" 
, ' + /  

s / 

o ' j  

I I I 

100 150 200 250 300 

Upstream liquid veloeity (enffs) 

- - - Three Field Model 
+ Experimantal data of Doroshenko (74) 

Figure 11. Comparison between the theoretical models and experimental data of Doroshenko (1974) when 
the upstream void fraction is (a) 10%; (b) 20%; (c) 30%. 

velocity and pressure were, respectively, 5%, 3.9 m/s and 1.8 bar. The bubble velocities were 
measured using double exposure photographs separated by several hundred microseconds. 

It can be surprising to see on figure 9 that, in the diverging part of the Venturi, the theoretical 
bubble velocity becomes smaller than the liquid velocity. In fact, the flow being downward, when 
the liquid velocity decreases, the buoyancy force opposed to the inertial forces comes strong enough 
to impose an equilibrium bubble velocity smaller than the liquid velocity. No turbulent forces being 
incorporated in the model, it is less able to predict correctly the measured velocity in the diverging 
part. Nevertheless, figure 9 shows that the TFM is quite able to predict the velocity slip between 
bubbles and liquid at a moderate value of the void fraction. 

5.2. Pressure drops--comparison with classical models 

We have first compared the TFM predictions with the experimental data of Lewis & Davidson 
(1985), who measured pressure drops across a standard nozzle with upward vertical bubbly flows. 
These bubbly flows are homogenised with two successive perforated plates upstream of the different 
nozzles used. Nozzle geometry and pressure tap locations are described on figure 3(c). 

As the cross-sectional area gradient is infinite at the nozzle entrance, we use an equivalent nozzle 
shape (figure 3(b)) when computing pressure drops. 

Figure 10(a)-(c) presents the calculated pressure drop, including the water column weight ~pLgH 
(where H is the distance between pressure taps) consistently with the procedure used by Lewis & 
Davidson, as a function of the upstream void fraction for specified liquid superficial velocities of 
54 and 65 cm/s and throat diameters of 3 and 4 cm. The numerical results obtained with the TFM, 
the LDM and that of Vromman (1988) are presented. 

For  liquid superficial velocities of 54 and 65 cm/s, the TFM model results are quite good, as it 
predicts the pressure drop within 4% of the experimental data, for all values of the void fraction. 
For  ULS = 52 cm/s and a throat diameter of 3 cm, the error is less than 5% for void fractions less 
than 2 5 0 .  In comparison, the two-fluid models deviate significantly from the experimental data 
and result in errors of approximately 20% for Vromman's model and 30% for the LDM. 

Figure 1 l(a)-(c) shows similar comparisons with the experimental data of Doroshenko (1974). 
As the two-fluid model of Vromman (1988) gives in this case, results very close to those of the 
LDM, we have used the HM as a third model for comparison. Doroshenko set pressure taps as 
recommend the standard ISO 1932, thus we used the correlations proposed by these standards 
and used a two-phase density p instead of the liquid density PL, to compute the pressure drop in 
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HM. As no details were given by Doroshenko on bubble size, we assumed that the rise velocity 
was 25 cm/s. 

We can see that the H M  produces good results for the void fraction presented. For  upstream 
void fractions of  10 and 20%, the close agreement of  the three models do not allow us to determine 
which is better. For  the void fraction of  30%, differences in the results increase: the HM tends to 
overestimate the experimental data, the L D M  to underestimate the data, and the T F M  provides 
excellent agreement with the data. 

The differences between the models are less pronounced than for the Lewis & Davidson 
experiments, since the distance over which we integrated the pressure is much smaller--approxi-  
mately five times. Small differences between the LDM, T F M  and HM equations added at every 
step have a much lower impact on the results. 
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Figure 12. Ratio of the homogeneous flow rate to the real flow rate against bubble diameter for an 
air/water flow in a Venturi for a void fraction of 30% and a throat to diameter area ratio of 0.1; (b) Ratio 
of the homogeneous flow rate to the real flow rate against bubble diameter for an oil/water flow in a 
Venturi for a fraction of oil of 30% and a throat to diameter area ratio of 0.1; (c) Ratio of the 
homogeneous flow rate to the real flow rate against bubble diameter for an oil/water flow in a Venturi 

for a fraction of oil of 30% and a throat to diameter area ratio of 0.1. 

This  c o m p a r i s o n  pe r fo rmed  for two ranges o f  flow rates and  for two pipe incl inat ions  (figures 
10 and  11) shows the benefits o f  the T F M ,  which are more  visible when the dis tance between 
pressure  taps  is increased.  Such a compa r i son  should  be extended to wider  ranges o f  velocities and  
to o ther  d ispersed flows to fur ther  verify its val idi ty,  but  shows quite posi t ive results for the 
three-field model ,  over  the more  widely known two-fluid models.  F o r  this reason we have chosen 
the T F M  to s tudy the influence o f  bubble  or  d rop le t  size on the pressure d rop  th rough  a Venturi ,  
and  then its influence on the total  mass  flow rate  evaluat ion .  

5.3. Influence o f  bubble size on pressure drop 

Last ly  it was i m p o r t a n t  to s tudy the sensit ivity of  the T F M  to the rise velocity 11", and to the 
bubble  d iamete r  db. This  al lows de te rmina t ion  o f  the ranges o f  admiss ible  bubble  d iameters  for 
which the H M  still gives good  results for pressure  d rops  and,  thus, for mean  velocities. 

The  cor re la t ions  for  V, p roposed  by Clift  et al. (1978) were chosen. We used (3-18) (Clift et al. 
1978) for spherical  bubbles ,  when db is less than  1 mm,  (7-5) to (7-9) (Clift et al. 1978) for  e l l ipsoidal  
bubbles  when db is between 1 and 18 mm,  and (8-5) and  (8-11) (Clift et al. 1978) for large deformed  
fluid part icles  when db is greater .  

To es t imate  the influence o f  the bubble  d iamete r  on the flow rate measurements ,  first, the pressure 
d r o p  across  a l inear  con t rac t ion  (designed accord ing  to the F rench  s t anda rd  N F  X 10-102), in a 
vert ical  p ipe  has been ca lcula ted  by the T F M .  F o r  each value o f  pressure d rop  we ca lcula ted  the 
flow rate QH we would  have found  from the homogeneous  model .  The  results are presented as the 
ra t io  o f  the volumet r ic  f low-rate  Qn to the real  flow rate QR (i.e. QH/QR). The convergent  length 
is 10 cm, the th roa t  a rea  to pipe ra t io  is 0.1, and  the pressure  taps  are  loca ted  at  the convergent  
en t rance  and  15 cm downs t r eam of  this locat ion.  Three  types o f  upward  flows were investigated:  
a bubb ly  a i r - w a t e r  flow, an o i l -wa te r  flow with, water  as the con t inuous  phase,  and  a wa te r -o i l  
flow with oil as the con t inuous  phase.  The  d ispersed phase  occupied  30% of  the entire volume in 
the three flows. 
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We can see in figure 12 that, for very small bubble diameters, the flow rate is equal to the flow 
rate we would obtain with the homogeneous model, as the bubbles are small enough so that there 
is no slip between phases. When the bubble size increases, the pressure drop increases up to a point 
where it remains nearly constant, as does the flow rate QH. 

The lower the real flow rate, the larger the errors that result from the use of  the homogeneous 
model. When the bubble size increases, the HM overestimates the true flow rate by 30% for 
air-water flows and by about 15% for oil-water flows at the lowest flow rates. 

Using these figures, for a given accuracy of the flow rate measurement, we can easily determine 
the bubble diameter range for which the homogeneous model is valid. If we consider an accuracy 
of  1%, for air-water bubbly flows the maximum diameter is 130 # m, while for dispersed oil/water 
flows, diameters up to 300 p m  (oil in water droplets) and up to 0.9 mm (water in oil droplets) do 
not result in deviation stronger than 1% from the homogeneous flow rate. 

In figure 12(b) and (c), the oil viscosity was only 10 times greater than the water viscosity. If 
we increase the oil viscosity to 10 -4 m2/s in one case and to 10 -3 m2/s in the other case, there is 
no change for the maximum bubble diameter when the water is the continuous phase, but when 
the oil is the continuous phase the maximum bubble diameter increases, respectively, to 0.9 and 
8 mm. 

When we increase the throat to pipe area ratio, the deviation of QH is less significant and the 
maximum bubble diameter for use in the HM increases. This limiting diameter is the input data 
for the OPTIMIX mixer design procedure and represents what the modelling effort was devoted 
t o .  

6. C O N C L U S I O N S  

Even if the hypothesis of dividing the flow into three different fields is still difficult to justify fully, 
the original approach of Kowe et al. has produced very interesting results for the modelling of 
pressure drops across a convergent section. 

The three-field model appears to provide a much better prediction of pressure drops than the 
classical two-fluid models, where it seems that the primary error results from a wrong interpretation 
of  the interfacial force between the liquid and the bubbles. Further experimental investigations are 
intended to show its validity in oil-water flows and it has obviously some potential for predicting 
pressure drops in three-phase air-oil-water flows. 

Finally it has been shown that it was possible to determine the critical bubble or droplet diameter 
beyond which the homogeneous model is no longer valid, for various two-phase flow conditions. 
In addition, this approach provides the critical bubble or drop diameter that allows us to size the 
OPTIMIX mixer which is the upstream part of our multiphase flow metering equipment. 
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